

OTHA – Omaha Tools for Hydrologic Analysis

William Doan, P.E.

Hydraulic Engineer, U.S. Army Corps of Engineers, Omaha District

OTHA – Omaha Tools for Hydrologic Analysis

Time-Series/Statistical Analysis Programs for Water Resources

-What is it?

- -Collection of programs/routines written in Omaha District on an "as-needed" basis
- "Advanced" statistical routines to use in conjunction with HEC-FFA, STATS
- Small, simple, stand-alone routines
- FORTRAN engines/VB GUI Interfaces
- Toolbox for time-series and statistical analyses.

OTHA – Omaha Tools for Hydrologic Analysis

- SPECIFIC MODELLING GOALS:
- Direct access to data via the Internet
- Convert data to standardized format
 (DSS Daily Flow and FFA Input Peak Flow)
- Provide for monthly, seasonal, or annual analysis
- Provide a common "look or feel" for all routines
- Provide a useful tool for working engineers

- Quick "tour" of program ..

OTHA – Omaha Tools for Hydrologic Analysis

Routines...

- Retrieves/Converts USGS Daily flow data
- Links to USGS Daily Flow Site using default browser
- Once find gage download data (Save as "Tab-separated data file")
- Give DSS filename and DSS Pathname
- Converts to DSS
- Also works on USGS "RECENT" data.

- Annual statistical summary of daily flows
- Min, max, means, volumes
- Monthly, seasonal, or annual basis
- Graphical Freq. Analysis
- Analytical Freq. Analysis
- Writes max flows out to FFA Input File
- Trend Analysis/Statistical Tests
- Example:

OTHA – Omaha Tools for Hydrologic Analysis DSSSTATS - Example

Annual Period:

Statistical Analysis:

num of values	min value	date of min value	max value	date of max value	accum value*	mean value	lag-1 serial corr.
366	663.00	22DEC1960	67600.00	29MAR1960	3135.66	4326.96	0.8564
365	530.00	24JUL1961	12400.00	24MAY1961	2389.95	3306.98	0.9137
365	500.00	11DEC1962	32300.00	26MAR1962	3645.69	5044.55	0.9185
365	315.00	26JUL1963	14700.00	24JUN1963	2249.23	3112.27	0.9152
366	520.00	30JUL1964	21200.00	17JUN1964	2431.29	3354.98	0.7797
365	633.00	17AUG1965	26600.00	26MAY1965	3809.28	5270.90	0.8465

Monthly Period:

Statistical Analysis:

num of values	min value	date of min value	max value	date of max value	accum value*	mean value	lag-1 serial corr.
31	3230.00	30MAY1960	20300.00	07MAY1960	410.89	6694.19	0.8533
31	2850.00	03MAY1961	12400.00	24MAY1961	307.73	5013.55	0.9918
31	1700.00	15MAY1962	13400.00	20MAY1962	274.69	4475.16	0.8511
31	1880.00	28MAY1963	3860.00	02MAY1963	173.76	2830.97	0.7609
31	1460.00	25MAY1964	12700.00	27MAY1964	270.29	4403.55	0.5513
31	2760.00	17MAY1965	26600.00	26MAY1965	433.22	7058.06	0.9303

OTHA – Omaha Tools for Hydrologic Analysis

DSSSTATS – Example (cont'd)

Trend Analysis:

Powder R. near Locate, MT Annual Maximum Mean Daily Flows

- **BALHYD**
- Serves as GUI for HEC-STATS
- Runs STATS (Vol-Freq) in "background"
- Takes STATS results and develops "Symmetrical Balanced Hydrographs"
- Writes 10-, 25-, 50-, 100-, and 500-year BH to HEC-DSS
- F-Part Path "100-Year BH"
- Monthly, seasonal, or annual basis
- Example:

OTHA – Omaha Tools for Hydrologic Analysis

BALHYD - Example

- -Pretty simple a lot of number crunching
- -Used to take days, now can do in minutes.

OTHA – Omaha Tools for Hydrologic Analysis

CORRDSS - Computes cross-correlation between two daily time-series via cross-covar, and DSS Omaha District USACE Files Dates and Periods C:\hecexe\corrdss.dss DSS File Starting Date: Ending Date: DSS Pathname 01JAN1960 31DEC2000 /TONGUE RIVER/MILES CITY/FLOW//1DAY/USGS/ First Lag: Last Lag: MELLOWSTONE RIVER/MILES CITY/FLOW//1DAY/USGS/ -10 10 C:\hecexe\out Output File Auxillary Programs Execute "DOS - LIST" CORRDSS HEC-DSPLAY HEC-DSSUTL HEC-DSSVUE Output File Corr. Square Lag 0.304 0.323 0.344 0.365

CORRDSS

-Time-Series cross-correlation using the cross covariance

$$\boldsymbol{\gamma}_{k}^{ij} = \frac{\boldsymbol{C}_{k}^{ij}}{(\boldsymbol{C}_{o}^{ii}\boldsymbol{C}_{o}^{jj})^{1/2}}$$

$$c_{k}^{ij} = (\frac{1}{N}) \sum_{i=1}^{N-k} (y_{t+k}^{i} - y_{mean}^{i}) (y_{t}^{j} - y_{mean}^{j})$$

- -Tells prob that 2 rivers will flood concur
- -Number btwn 0 and 1 indicating coincidence
- -Confluences or interior drainage analyses

-Example:

OTHA – Omaha Tools for Hydrologic Analysis

CORRDSS Example

- -Hydrologically Similar Basins have higher CC
- -Quantifies the relationship
- -Analysis takes a few hours.

- QWAT
- Retrieves/Converts USGS Peak Flow Data
- Links to USGS Peak Flow Site using default browser
- Once find gage download data (WATSTORE Format)
- QWAT converts to FFA Input File (QR Cards).

OTHA – Omaha Tools for Hydrologic Analysis

EXTENSION

- Extension of Records or Two-Station
 Comparison Bulletin 17B Appendix 7
- Adjusts mean log Q and stand deviation of short-term station based on long-term station
- Can use inputted skew value for freq-curve (technically this method is for zero skews)

-Example:

Omaha District

OTHA – Omaha Tools for Hydrologic Analysis

EXTENSION (Example)

Statistical Properties	Short-Term Station	Long-Term Station	Extended Short- Term Station
Magnilea	2 2504	2 4007	2 2695
Mean log discharge	3.3504	3.4907	3.3685
Standard deviation	0.2935	0.1904	0.2959
Years of record	29	92	70 (Equivalent)

- Modifies Statistical Parameters
- Performs Freq-Factor Equation.

OTHA – Omaha Tools for Hydrologic Analysis

QGEN

- Synthetic generation of individual peak flows
- -Simple Linear Regression with nearby gage
- -Linear Regression with "noise" (normally dist.)
- Maintenance of Variance Extension (MOVE)
- -Writes-out original data combined with synthetic data to three FFA input files:
- -Outlr.ffa Outlrwn.ffa Outmove.ffa

- Example:

OTHA – Omaha Tools for Hydrologic Analysis

QGEN (Example)

Yellowstone River Application for Linear Regression, Linear Regression with noise, and MOVE

	· —
	Yellowstone River
Number of Years for Long-Term Gage (Sidney)	86
Number of Years for Short-Term Gage (Miles City)	73
Number of Concurrent Years between Gages	69
Number of Years to Generate Data	17
Correlation Coefficient	.89

OTHA – Omaha Tools for Hydrologic Analysis

QGEN (Example)

-Setups 3 FFA Input Files

-Run FFA.

OTHA – Omaha Tools for Hydrologic Analysis QGEN (Example)

OTHA – Omaha Tools for Hydrologic Analysis

MIXPOPS

- -Freq. Analysis for a gage that has 2 physically-differentiable populations hurricane events, snowmelt runoff, etc.
- -Computes separate flow-frequency curves by converting gpp to linear distances best-fit line
- -Combines two curves using the Total Probability Theorem:

$$P_{combined} = P_A + P_B - P_A P_B$$

-Example:

OTHA – Omaha Tools for Hydrologic Analysis

MIXPOPS (Example)

-Provides for more accurate flow-estimates.

OTHA – Omaha Tools for Hydrologic Analysis

TOTPROB

- -Given statistical parameters computes LP III distribution for two populations
- -Combines two curves using the Total Probability Theorem:

$$P_{combined} = P_A + P_B - P_A P_B$$

-Regional Analysis.

OTHA – Omaha Tools for Hydrologic Analysis

RRECFREO - Precipitation Frequency Analysis Using GEV1 Probability Distribution _ | 🗆 | × | Omaha District USACE Files Dates, Periods, and Hours for Analysis C:\hecexe\precfreq.dss DSS File Starting Year: Ending Year 1950 1990 DSS Pathname for Hourly Data Ending Period: Starting Period: /SANDHILLS/BASSETT/PRECIP//1HOUR/NE/ 31DEC lotjan Hours for Frequency Analysis: C:\hecexe\out Output File 1 2 3 Auxillary Programs 12 24 48 Execute "DOS - LIST" HEC-DSPLAY PRECFREQ Output File 72 96 120 /SANDHILLS/BASSETT/PRECIP//1HOUR/NE/ MAXVALUE 1-HRMAX 01JAN1950 31DEC1950 1-HRMAX 01JAN1951 31DEC1951 20AUG1951 01 1-HRMAX 01JAN1953 31DEC1953 22JUL1953 18 1-HRMAX 01JAN1954 31DEC1954 18JUN1954 03 1-HPMAX 01JAN1955 31DEC1955 20SEP1955 08 1-HRMAX 01JAN1956 31DEC1956 04JUN1956 07 1-HRMAX 01JAN1957 31DEC1957 27JUL1957 01 2.55 1-HRMAX 01JAN1958 31DEC1958 24JUL1958 02

PRECFREQ

- -Precipitation-frequency analysis of hourly data using the GEV-1 distribution and DSS
- -Can input up to 12 different durations, (1-hour, 2-hour, 6-hour, 12-hour, etc.)
- -Sorts out max "n-hour" value for each year
- -Computes graphical frequency analysis and analytical solution for the GEV-1 distribution
- -Monthly, seasonal, or annual basis

-Example:

Precipitation in inches

US Army Corps of Engineers Omaha District

OTHA – Omaha Tools for Hydrologic Analysis PRECFREQ

Exceedance Frequency

OTHA – Omaha Tools for Hydrologic Analysis

RISK - Computes Total Risk of "Failure" during Project Life using the Binomial Distribution _ | 🗆 | × | Omaha District USACE Data: Total Risk of at Least one Failure over Project Life: Total Risk of Exactly Given Number of Failure(s) over Project Life: Exceedance Probability Exceedance Probability in any given year: in any given year: .01 .01 (Ex: .50, .10, .02, .01, etc.) (Ex: .50, .10, .02, .01, etc.) (Number of failures=at least one) Exact Number of failures: 10 Project Life in Years: Project Life in Years: $P = \frac{n!}{(n-k)!k!} P^{k} (1-P)^{n-k}$ $P = 1 - (1 - \frac{1}{T})^{n}$ Execute RISK1 Execute RISK2 Output File Output File output Output File output2 Output File Probability of failure Probability of failure in any given year: 0.0100 in any given year: 0.0100 Recurrance Interval Recurrance Interval (in years) for failure: 100. (in years) for failure: 100. Number of failures: (at least one) Number of failures: Project Life in years: Project Life in years: 10 Total Risk of Failure Total Risk of Failure(s) during Project Life: 0.095618 during Project Life: 0.004152

RISK

- -Computes total risk of "failure" over project life using Binomial Distribution
- -Computes "at least one" failure or exact given number of failures
- -Example: Risk of having a 100-year flood in a ten year period is 9.6%
- -Example: Risk of having 3 100-year floods in a ten year period is 0.4%.

OTHA – Omaha Tools for Hydrologic Analysis

MEANPEAK

- -Computes ratio of instantaneous peak flows to mean daily flows for each year
- -From FFA file, determine which day peak flow occurred, then goes to DSS file to see what the corresponding mean daily flow was for that day – determines ratio
- -Determines the mean annual ratio and the regression relationship between peak flow and ratio
- -Example:

OTHA – Omaha Tools for Hydrologic Analysis

/PLATTE R./NORTH BEND/FLOW//1DAY/OBS/

	Data as	7	Corresp. Mean	Ratio of
	Date of	Annual		
	Peak	Peak	Daily	Peak Q
to	Discharge	Discharge	Discharge	Mean Q
	2JUN1949	21000.	14900.	1.4094
	12JUL1950	25000.	15000.	1.6667
	31MAY1951	30800.	21200.	1.4528
	28MAR1952	18000.	15000.	1.2000
	11MAY1953	20900.	14600.	1.4315
	18JUN1954	22800.	12200.	1.8689
	10MAR1955	12700.	12000.	1.0583
	19MAR1956	7000.	6600.	1.0606
	17JUN1957	44200.	39100.	1.1304
	•			
	•			
	24MAR1987	54000.	43700.	1.2357
	27FEB1988	21000.	17000.	1.2353
	13MAR1989	31900.	19800.	1.6111
	17JUN1990	37300.	33600.	1.1101
	3JUN1991	21600.	17900.	1.2067
	6AUG1992	15900.	10500.	1.5143
	10MAR1993	97800.	82300.	1.1883
	5MAR1994	49000.	38000.	1.2895
	28MAY1995	32200.	20200.	1.5941
	2JUN1996	20300.	19000.	1.0684
	21FEB1997	31500.	22000.	1.4318
	19JUN1998	27400.	21500.	1.2744

MEANPEAK (Example)

LINEAR REGRESSION ANALYSIS:

Average Mean Daily Flow=
Average Ratio of Qp to Qm=

24824. 1.43171

Y-Intercept= 1.4811220169 Slope= -0.0000031839

OTHA – Omaha Tools for Hydrologic Analysis

STATIONARITY

- -Tests for stationarity in statistical parameters
- -Essentially FFA in a loop time-series of statistical parameters
- -Performs trend-analysis on stat. parameters
- -Performs statistical significance using t-test (checking if slope of line is significant)

- Example:

OTHA – Omaha Tools for Hydrologic Analysis

- Mountain Watershed **STATIONARITY (Example)** - Urbanizing Watershed

OTHA – Omaha Tools for Hydrologic Analysis Conclusion

- Built-in Users Manual and link to Web-Site
- All routines have been used/tested in the Omaha District on a variety of projects
- -All routines have built-in example files which are also the default values
- -Written by/for Omaha District available to whomever could use it
- -For further information or downloads:
- -www.nwo.usace.army.mil/otha

Questions?

